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UNSOLVED PROBLEMS
IN EVOLUTIONARY THEORY

P. A. P. MORAN
AUSTRALIAN NATIONAL UNIVERSITY

1. Introduction

The theory of evolution is a field of research in which many mathematical
investigations have been made and in which many unsolved problems remain.
Whatever one's opinions are about the ultimate causes of evolutionary progress
(a still debatable problem), it is now clear that an overwhelming part in deter-
mining the direction of evolution is played by selection and mutation, and
furthermore, that the only empirically testable theory of evolution that has at
the present time any plausibility is that evolution is the result of these two
factors.

In the Proceedings of the Second Berkeley Symposium, Professor W. Feller
gave a lecture on "Diffusion processes in genetics" in which he drew attention
to the very interesting stochastic processes constructed and studied by Wright
and Fisher which attempt to describe and explain what happens to the genetical
structare of populations when we take account of the fact that the population
has a finite size so that what happens at birth, mating, and death is not deter-
minate but has a random character. This lecture has stimulated a good deal of
further research on such random processes (see Moran [14] and more recent
papers of Karlin, McGregor, and Ewens).

So long as the population size is effectively finite, use of the theory of random
processes is essential. In this way we can study such problems as the rate at
which a population becomes homozygous at some locus when there is no mutation
(a phenomenon called "Drift" by Sewall Wright and which he holds, I think
incorrectly, to be of importance in evolution), the stationary distributions of
gene frequencies when there is mutation, and the probability of survival of new
mutants.
Although these problems must remain of great interest to students of stochastic

processes, I believe that the study of the deterministic processes which effectively
describe what happens when the population size is large are more important
from the evolutionary point of view. This is due to the fact that the theory of
stochastic genetic processes shows that the influence of the random element is
of the same order as the reciprocal of the population size. Thus, for example,
for populations of size greater than 104, deterministic theory is sufficient to
answer nearly all problems concerning selection in which the selection coeffi-
cients are, say, greater than 1O-3. Similarly, in studying the effect of mutation
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458 FIFTH BERKELEY SYMPOSIUM: MORAN

we can use deterministic theory provided the population size is substantially
greater than the reciprocal of the mutation rate (except, of course, for the
special problem of finding the probability of survival of a single new mutant).
Most natural populations probably satisfy these conditions, as is illustrated

by the extreme case of most species of insects, although occasionally there are
some small isolated populations whose size is sufficiently small to require consid-
eration of the stochastic element. This is illustrated, for example, by laboratory
populations or by the populations of the grasshopper, Moraba Scurra, in the
graveyards of Australian country towns, which have been extensively studied
by M. J. D. White.

It is of some importance to note that for the stochastic element to be important
from the evolutionary point of view, such populations must be completely
isolated. It can be shown (Moran [13]) that conclusions about the stochastic
behavior of large populations are unaffected if these populations are divided
into many smaller populations, provided there is a small but nonzero amount
of migration between them. The effective population size is then practically
equal to the whole population.
Our aim, therefore, in this paper is to consider the theory of evolution in

populations large enough for stochastic variations to be ignored. Since we are
then concerned with average numbers or proportions of individuals of a specific
type, the subject can still be rightly regarded as a part of statistical analysis.
We define the state of such a population at a given time, or in the case of non-

overlapping generations in a given generation, by a finite set of quantities xi,
. .. , Xk. It is often convenient to write this set in vector form, x = (xi, . * *, Xk),
although it does not have the algebraic properties of a vector. We attach a
suffix, t, so that xt is the state in the tth generation, or if we are considering a
model which evolves continuously in time, we write x(t) where t is a continuous
variable.
The assumed properties of the population then enable us to write down a

relation between the values of x for one generation (the parent generation) and
the corresponding values in the next generation. We therefore begin by consid-
ering the properties of recurrence relations of the form

(1) Xt+i = f(xt) = (fi(4t), * * * fl(t)

In most cases the components of x will be the relative proportions of genetic
individuals of various types (genes or zygotes) and will therefore add to unity
and be nonnegative. Equality (1) is then the mapping of the interior of a (k - 1)
dimensional simplex onto itself. This is the case considered in this paper.

2. Recurrence relations and their related differential equations
We first look for the stationary states of the system which will be given by

the relevant solutions of the equation obtained from (1) by putting x = Xt = xt+,
which is thus
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(2) x = f(x).
It is possible for the solutions of this equation to consist of isolated points, lines
in the space of the (xi), or the whole region in which x is defined. Any solution
of (2) will be said to be a "stationary point" if E xi = 1, all xi _ 0, and if we
have further that all the xi are greater than zero, we shall say it is an "internal"
stationary point. In most cases we will be concerned with the number and
position of isolated stationary internal points.
We then have to consider the local stability of the system for small variations

about the stationary values. Write Xt = x + twhere X is a solution of (2) and _t
is a vector (ylt, * - *, Ykl) of small quantities adding to zero. Then under suitable
conditions on the function f(x),

(3) xi + Yi,t+i = fi(x) + YE yjfi(tf) + O(y yt).
It is clear that a sufficient condition for the point x to be locally stable is that
all the roots of the matrix,

(4) (a j) = ____

should have moduli less than unity, and a sufficient condition for instability
is that at least one of the roots has modulus greater than unity. When all the
moduli are equal to unity the situation becomes more difficult. As an example
of this, if we take w, = 1, W2 = W3 = 2 in the equation (9) discussed later, we
obtain a recurrence relation of the form

(5) xt+1 = f(xt) = Xt 2-_X
where 0 < xt . 1. Even though xi = 0 is a stationary point, f'(O) = 1, and the
above criterion does not apply, although this is clearly stable since xt+l < xi
for 0 < xi < 1.

It is sometimes easier to consider only the behavior of the population in the
neighborhood of the boundary of the region. Starting from a boundary point
and introducing a perturbation of an allowed kind (for example, all xi _ 0),
it is often fairly easy to show that all boundary points are unstable. This makes
it likely that there is a stable stationary point in the interior, although it does
not prove it since there remains the theoretical possibility of cyclic behavior.
This approach has been extensively developed by Bodmer [3] (see also Bodmer
and Parsons [4], [5]), who was primarily interested in the initial progress and
survival of new mutant genes, and I have used it elsewhere (Moran [17]) to
discuss a model in which I was unable to prove directly the existence of a stable
stationary interior state.

Associated with equation (1), there is a related theory for conitiIluous time
using differential equations. This is most simply approached if we suppose that
the components xi of x are the relative frequencies of elements of k different
kinds in some population. We assume that in a small interval of time (t, t + dt),
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a fraction, dt, of the population dies and is replaced by dt new offspring of types
whose relative frequency is given by the components of f(}(t)), where x(t) is
the vector giving the structure of the population at time t, the notation being
changed to denote that t is now continuous. We then have x(t + dt) =
(1 - dt)x(t) + dtf(a(t)) from which we derive the system of differential equations

(6) d_ =_x)(t) +L(X(t)).

The stationary states are again given by the solutions of (2). Contrary to what
we might expect, we shall see later that (6) does not always correspond to the
natural model of a genetic population evolving continuously in time unless the
components xi(t) of x(t) are such as to give a complete description of the state
of the system. Nevertheless, (6) can be used as an approximation to the behav-
ior of (1), has the same stationary points, and has a closely related stability
theory.

Let x be a solution of (2) and write x(t) = x + y(t) where y(t) is a vector of
small components representing a "variation" or perturbation around the point x.
The asymptotic behavior of y(t) will provide us with a theory of the stability
of the system (6) around the point x (for a general survey of the analytical
theory, see Cesari [6]).

Under suitable conditions on f(x(t)), we can immediately derive the "varia-
tional" equations for y(t) which are

(7) dyi(t) = -yi(t) + E yj(t) fi(a-)dt Ox.,

Then all yi(t) -* 0 if the roots of the matrix (4) are such that their real parts
are less than unity.

Stability in the above sense is a "local" stability. Given a stationary point x

we can associate with it the set of all points P, such that starting from P the
population ultimately converges to x. This may be called the domain of attrac-
tion of X. If the domain of attraction of an internal point x contains all internal
points of the simplex, we say that x is "globally" stable.

3. Selection dependent on a single locus with two alleles

Consider a model of a genetic population in which there are two alleles, A
and a, at a single locus such that the "fitness" of a newly formed individual
zygote is dependent on this locus alone. There are three possible types of zygote,
AA, Aa, and aa, and we define their fitnesses to be nonnegative numbers wi,
W2, W3, proportional to the numbers of gametes that a zygote of these types,
newly formed by union of gametes, will contribute to the formation of the next
generation. We assume that successive generations are nonoverlapping and that
mating is random, so that the probabilities of formation of zygotes AA, Aa,
and aa will be p(A)2, 2p(A)p(a), p(a)2 respectively, where p(A) and p(a) =
1 - p(A) are the relative frequencies of the A and a gametes entering into the
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formation of the zygotic population. Let p = 1 - q be the frequency p(A) in
the first (parent) generation which we suppose to have been produced in this
manner. Then the mean fitness of this population is

(8) W = w1p2 + 2w2pq + w3q2.
It is important to notice that in this discrete model the w's are not simply

the relative fertilities of the adult zygotes, but they also depend on the prob-
abilities that the newly formed zygotes survive to the age of reproduction.

If p' is the frequency of A in the next generation, we have

(9) P, = p
Wlp + W2q

an equation of type (1). This can also be written

(10) p - (wI-w2)p+ (w2-w3)q pq dW

where the derivative of W is calculated remembering that q = 1 - p. The
stationary points are therefore given by equating the right-hand side of (10)
to zero and thus, either p = 0, or q = 0, or the derivative of W is zero for some
internal point satisfying 0 < p < 1. It is further easily seen that for such an
internal point to be locally stable, we must have

d2W < 0(11) dp2

If this is so, 2w2 - w -w2 > 0 and also w2 > wI, W2 > W3. The internal point
is then stable for any allowable deviations, and the points p = 0, 1 are unstable
stationary points.
Thus if W attains a maximum at an internal stable stationary point, its

value there is

(12) w~~~r7. w2 W
(12) 2=w2 Wl -w3
and p is given by
(13) W2 - W3

2w2-w1-W3
Thus the population moves to maximize the mean fitness W. Notice that the

position and stability of such an internal point is unaltered if we transform w,
into another set of values by the transformation wi -+ Xwi + u, where X > 0,
ju _ -X min wi, but the rate of convergence of the population to its equilibrium
value is altered unless ,u = 0. It is also not hard to show that in this simple case
the gene frequency changes monotonically from its initial value to its final value
and does not overshoot the latter.
Now consider the effect of mutation onl a stationary state of the population.

Suppose first that in the absence of mutation there is a stationary stable internal
state (that is, one with 0 < p < 1). Let A mutate to a at a rate a, per gamete
per generatioin, and a to A at a rate a2. The rates a, and a2 will usually not be
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larger than 10-4. Let po = 1 - qo be the gene frequency of A in the absence of
mutation so that po is given by (13). Let selection in the production of the
gametes occur first and then mutation. If p is the equilibrium gene frequency,
we therefore have Wp = p(1- al)(wlp + U2q) + qa2(W2p + w3q), from which
we get, to a sufficiently good approximation,

(14) p=
W3- W2 ,p0-±IP+W2qO ap-a2O

(14) p = 2w2- w1 -W3 poqo(2w2 - WI - )(WpO -a2qO)

=_o W(a!lpo- a2qO)
P- pOqo(2w2-Wl-W3)

The effect on the fitness, W, is therefore to lower it by an amount (ignoring
terms of higher order) equal to

(15IW2(alpO- a2qo)2 dV2W = 2(w2 W1W3)2(alpo a2qo)2
(15) 2poqo(2w2 w, -W3)2 dp2 p O(2W2-W-W3)3
This is of the second order in the a's, and thus mutation has little effect on
fitness dependent on a single locus at which there is a stable internal polymor-
phism.
The situation is different when there is no internal stable point. Consider the

particular case w, <W2 < w3. Then the only stable stationary case is given by
p = 0. The mean fitness W is a maximum for this value, but because it occurs
at the end of the range, its derivative is not in general zero. The mutation of A
to a will have little effect, so we put a, = 0 and write a for a2. The stationary
points are then the solutions of Wp = p(wlp + w2q) + qa(w2p + w3q). One
solution is p = 1, and the other is very close to p = (W3/W3 - W2)Ca, if we assume
a small compared with W3 -W2. Since
(16) ~dW

(16) d = 2(w,p + w2(q - p)-w3q),
which is equal to 2(w2 -W3) at p = 0, the decrease in fitness is about 2W3a
which is thus of the same order as the mutation rate.

It follows that if we consider a single locus, decrease in fitness due to mutation
will only be important in the absence of a selectively balanced polymorphism.
We shall see later that when fitness is controlled by more than one locus, the
effect of mutation may be of the first instead of the second order at a stable
stationary internal point, because fitness dependent on more than one locus is
not in general a maximum at such a point.

4. Selection dependent on a single locus with more than two alleles

The above theory has been known for many years. More recently attention
has been devoted to selection dependent on a single locus at which there are
more than two alleles, and here the situation is not. (lite so siml)le. We assume
again that we have nonoverlappiilg generations of diploid individuals who mate
at random so that the frequencies of the various classes of zygotes in the next
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generation are proportional to the products of the frequencies of the gametes.
Let there be k alleles A1, * * *, Ak at the given locus. Then we represent the
zygotes by the symbols (AAj)(i, j = 1, * * *, k). There are clearly (1/2)n(n + 1)
different pairs, but it is convenient algebraically to draw a distinction between
(A Aj) and (AjAi) when i $z j, while keeping their frequencies equal. This
could be done, for example, by conventionally supposing that the first of the
two alleles is derived from the father and the second from the mother. We shall
not, however, consider models in which the gene frequencies or selection co-
efficients are different in the two sexes, although such models are of interest in
some special cases.

Let the gene frequency of Ai among the gametes which formed the first
generation be pi(E pi = 1). Then using the above convention and the fact that
mating is random, the frequency of newly formed (A 4.j) in the first generation
will be pipj. The fitness of (A4Aj) is defined to be wij, a nonnegative number
proportional to the number of gametes this newly formed zygote will contribute
to the next generation. Then the mean fitness of the first generation is

(17) W = E wijpipj,
ii

where the sum is taken over all values of i and j.
The numbers of Ai in the gametic product of this generation will be propor-

tional to

(18) E Wijpipj + E2 WkiPkPi = 2pi E_ wijpj.
j k j

The sum of all such expressions is 2W, and if we write p' for the frequency of A
in the next generation, we have

(19) Pt = piW- E wtjpj.

The mean fitness, W', of the next generation is

(20) WI = WWjp,pj = W E2 WjWikWtjPiPiPkpc-
ijkt

It is a remarkable fact that W' > W, so that the mean fitness does not
decrease from generation to generation. This was first proved by Scheuer and
Mandel [22], and by Mulholland and Smith [18]. Later proofs were given by
Atkinson, Watterson, and Moran [1], and by Kingman [9], [10]. The last proof
is particularly simple and also makes clear the conditions under which W' = W,
so that we give it here.
To do this we use repeatedly the inequality

(21) Eaai f> (Ei ) X

where ai _ 0, E ai > 0, bi _ 0, k _ 1. We have, on renumbering the suffices,
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1(22) E WijWikWtepiPjpkptC= 2 WijW,ik(, Wtjpt + E- Wmkp.)Pipjpk
ijkt 2jk C m

_ , WijWik(E WtjWmkPtPm) "PiPijPk,
ijk Cm

on using the inequality between arithmetic and geometric means. This in turn
is equal to

(23) E pi{E Wijpj(F wipt)"'2}2 _ {ES pi E Wijpj(F wtjpe)'l2}2, by (20).i j C i j C
This can be written as {j pj(Et Wtjpt)312 2, and using (21) again, this is not
less than

(24) {(W jp=(Wij,ipj)3.
The sequence of inequalities is then equivalent to W' > W, and equality only

occurs at an internal point (all pi > 0) if

(25) E WCjpj = E Wijpipj for all 4.
i ij

This last equation is equivalent to the condition for stationarity that we get
when we put pi' = pi > 0 in (19). Thus the mean fitness must increase if the
initial point is an internal point which is not stationary, and a stable stationary
internal point must be a local maximum of W.
We can look at this in another way. Consider the stationary points of W

subject to the condition that E pi = 1. Since W is a quadratic form in the pi,
finding its stationary points under this condition is equivalent to finding the
stationary values of b = W/(F p2)2 when the pi have arbitrary nonnegative
values. Then

(26) i ( pj) P )3 -2W}-

Putting this equal to zero, we again obtain the conditions jwijpj = W, for
all i, which, by (19), must hold at any internal stationary point. The fact that
W is a quadratic form implies that if there is an isolated stationary point, there
is only one such point.
The conditions under which such an internal stationary point is stable have

been discussed by Mandel [12], Kimura [7], Penrose, Smith, and Sprott [21],
and Kingman [10].
We shall see later that the principle that the mean fitness of a population tends

to increase until it reaches a maximum holds in general only for fitness dependent
on a single locus and is not a general principle of evolutionary theory.

5. The single locus problem with continuous time

Associated with equations (19), we naturally have a continuous time model
in pi(t), the frequency of Ai at time t, satisfying the differential equations
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(27) dpi(t) =_pi(t) + WWt-Ipi(t) E- wiipj(t),dt
where W(t) = Zij wijpi(t) pj(t).

If the pi(t) satisfy this equation, it is inow much easier to prove that JV(t)
cannot decrease, for we have

(28) 1dWl(t) - wijpi(t) dpi(t)
2 dt ijdt

E wijpi(t) {-pj(t) + W1(t) 1pj(t) E Wjkpk(t)}
ii k

WV(t)-1 {J Iijpi(t)pj(t) E Wjkpk(t) - WI(t)2}
ij k

WV(t)-' { pj(t) (3 WjkPk(t))2 - [ pj(t) E Wjkpk(t)]2} 0,

because of the inequality E piai _ (Y piai)2 for pi > 0, E pi = 1, ai > 0. The
mean fitness of those zygotes which contain Ai is -k Wikpk(t). Thus the rate of
change of W(t) on this model is proportional to the variance of these quantities.
This is Fisher's so called "Fundamental Theorem of Natural Selection."

Unfortunately, however, equations (27) do not correspond to a natural model of
an evolving population and can be regarded only as an approximation useful when
the u,ij are nearly all equal. The reason for this is that although mating remains
always "at random," the frequencies of zygotes (A Aj) do not remain equal to
the products of the gene frequencies, even if they start that way.
To see this, consider a population of zygotes (AiAj) wvhose frequencies are

pij(t) = pji(t), and are such that initially (for example, at t = 0) they are equal
to pi(t) pj(t). In any small interval of time (t, t + dt) we suppose that a fraction,
dt, of the population of zygotes dies, and is replaced by dt offspring produced by
random mating among the parents existing at time t, due accord being taken of
the selective differences, wij, which now have to be regarded as relative fertilities
since the chance of death of an individual in (t, t + dt) must be indepenldenlt of its
age for this model. Then

(29) pij(t + dt) = (1 - dt)pij(t) + dt pi(t)pi(t)W(t)-2 E wikpk(t) E Wtjpf(t).
k t

The appropriate differential equation is then

(30) dp(t) -pij(t) +Pi) pj(t)pj(t)W(t) E WikPk(t) E Wtjpt(t).dt kc I

At t = 0, pij(t) pi(t)pj(t), and if this is to remain true for t > 0, we must
have

(31) dp (t) = pi(t) dp3(t) + pj(t) dpi(t)
dt dt + d3t)d

= pi.(t)pj(t) {- 2 + WI(t) E Wikpk(t) + W1(t) WE tjpt(t)} -
k I

Equating this to (30), replacing pij(t) by pi(t)pj(t), ani( assuming the latteir to be
nonzero, we get
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(32) (IV(t) - E Wikpk(t))(TV - E Wlipe(t)) = 0,
kI

which implies that either dpi(t)/dt = 0, or dpj(t)/dt = 0, which is not in general
true unless all the wij are equal, or the population is stationary. The population
will tend to the same stationary point as the two previous models, and the pi(t)
will have the values obtained by maximizing E wijpi(t)pj(t). The true mean
fitness of the population is E wijpij(t). At the stationary point this will have the
value previously given, but in the course of approaching this point, it may in-
crease or decrease. This is very simply seen to be the case if we consider a two
allele situation in which the zygotes (AA), (Aa), and (aa) have (say) the fitnesses
1, 2, 1, and suppose that the population starts in a state in which all individuals
are (Aa). The true mean fitness must then decrease. Notice also that in this con-
tinuous time model "random mating" does not imply that the frequency of a
zygote is equal to the product of the frequencies of the gametes which entered
into its formation, except when the state of the population is stationary.

Before leaving the subject of selection dependent on a single locus we mention
two further generalizations. We have so far assumed that the wfj are constants
independent of the genie frequencies. It is easy to imagine plausible situations in
which this is not so. The mean fitness may theii decrease, and the theory is
naturally more complicated. Some examples are given in Moran [14].
Another restriction that may be relaxed is that of random mating. One

alternative is "assortative" mating. This occurs when there is a tendency for
some types of mating to have a greater or lower probability than the product of
the frequencies of the types involved. WVhen individuals have an increased proba-
bility of mating with other individuals of the same genotype, the assortment is
said to be positive, and in the reverse case negative. In deterministic models the
resulting theory is complicated but not too difficult. The effect of negative
assortative mating is quite different from that of positive assortative mating in
that the latter does not tend to alter the gene frequencies whereas the former
has the effect of forcing the gene frequencies (in the two allele case) towards the
value 1/2. Thus, negative assortative mating results in a pseudo-selective hetero-
zygote advantage which can produce a permanent polymorphism. This is really
the process which keeps the sex ratio at conception near unity. In stochastic
models assortative mating, especially wheni negative, is much more difficult to
deal with (Watterson [23]).
Another subject which might repay mathematical analysis is the evolution of

genetic populations which depend oIn each other by, for example, competition,
predation, or parasitism. This would be of interest in the study of the evolution
of disease.

6. Selection dependent on several loci

We now turn to the case of more than one locus. Suppose that there are k > 1
loci at each of which there are two alleles, Ai and ai (i = 1, - *, k). These loci
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need not all be on the same chromosome, but for a general theory we may
imagine them all on a single chromosome separated, if necessary, into groups so
far apart that there is so much crossing over between them that they behave as
if they were on different chromosomes.
The restriction to two alleles at each locus is not importanit, for two loci at

which there are alleles A1, a,, and A2, a2, respectively, might be so close together
that there is no crossing over between them. They then behave as a single locus
with four alleles which can be denoted by A1A2, A1a2, aIA2, and ala2. Similarly,
we could obtain a 'locus' with 28 (s > 2) effective alleles, and then, by identifi-
cation, a locus with any number of alleles less thail 28.
We denote each gamete by a vector (xi) = (xI, * * *, xk), where xi = 0, 1 ac-

cording to whether the gamete contains Ai or ai. Similarly, we denote a zygote
by an ordered pair of such vectors (xilx4) = (x1, * * *, XkX'l, * - *, x*) where it is
again algebraically convenient to distinguish such a zygote from (x4 |xi) =
(x1, * * *, xk'xl, * * *, Xk) by some conventional distinction (such as the origin of
the constituent gametes from father or mother) which ensures that the fre-
quencies of such pairs of zygotes are equal.
The fitnesses of the zygotes are again defined by nonnegative numbeirs wu(xzi4xt)

where not only do we assume w(xi'jxi) = w(xijx`), but we shall also assume that
the w's do not depend on how the alleles are distributed among the two com-
ponents; that is, we shall suppose, for example, that w(11100) is equal to w(10101).
This is equivalent to assuming that the w's are functions of (zi) = (xi + x4)
only. We shall, however, have to distinguish (xi) and (x4) when we find the
gametic output of each zygote (some evolutionary problems have been considered
in which the w's depend on the (xi) and (xt) separately, but we shall not consider
this "position effect").

Let the generations be nonoverlapping, and suppose that in the gametic output
which formed the first generation the frequency of gametes of type (xi) =
(x1, * * ,Xk) is p(xi) = p(Xl, * - *, Xk). There are 2k such gametes and

(33) YE p(x1, * * * , X0) = 1.
xi

These form zygotes by random mating so that the frequency of the zygote
(xilx4) can be written as

(34) p(xilx4) = p(xi)p(x4).
There are 22k such zygotes, 2k of which are such that xi = xt for all i. These

are the "homozygotes," and the remainder are "heterozygotic" in respect of one
or more loci, and are identifiable in pairs with the same frequencies.
We now have to consider the manner in which the zygotes produce the gametes

which form the next generation. The number of gametes they produce will be
proportional to the corresponding w's, but now that we have more than one
locus, we have to take account of the possibility of "recombination" due to
"crossing over." Suppose that the loci are arranged in order on the chromosome
at points P1, *-. ,1P. Recombination will occur between P1 and P2 if an odd
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number of crossovers occur between them. Since there are k- 1 gaps between
the loci, recombinationi can occur in 2k-1 ways (includiing the case of no recombi-
nation). The probabilities with which these occur will depend on the positions
of the loci and their distances apart. An elaborate theory (Bailey [2]) exists for
this dependence, but is not relevant here.
Suppose that an odd number of crossovers occur in each of the gaps j1, j2,

*. , ji (ji = 1, * * *, k - 1), and zero or an even number in the remaining gaps.
For the probability of this occurring we shall write

(35) 2R(0, O, O, * * *, O, 1, 1, 1, O, - * -*) = 2R(1, 1, 1, *... 1, O,O,O, 1, *.),

there being k symbols equal to 0 or 1, and a change in the sequence occurring
between the sth and (s + 1)th symbol if an odd number of crossovers occurs in
the sth gap. We write this as 2R(b1, * * *, 6k) where &S = 0, 1, and we have made
this equal to 2R(1 - 61, * * *, 1 - Sk) in order to ensure symmetry in the follow-
ing equations. We then have

(36) E R(b1, 6k) = 1,

where the summation is taken over all sequeinces of k zeros and ones.
If a recombination of type (61, * * *, 6k) occurs in the production of gametes

from a zygote of type (xl, ... , XklXl, * * , x'), the gametic output will consist
of equal numbers of gametes of the form

(37) ((I - 61)x1 + SlXl , (1 - bk)Xk + xk'),
and of the form

(38) (blxl + (1 -1)x, * * *, SkXA + (1 - bk)Xk)-
Thus, zygotes of type (xi, * , Xk,Xl, * , xk) will have a total gametic outplut

such that the numbers of gametes of type (38) will be proportional to

(39) W(Xi, * * *, Xk,XI*, xk.)R(Si, ,k)-
The frequency of such zygotes is

(40) p(xl, . . ., XkjXIl * * *, xk) = p(xi, X* *, Xk)P(Xl, * Xk.),
which we write as p(xilx,) p(xj)p(x). Thus, finally the total number of
gametes of type (Yi, * , yk) contributing to the next generation will be pro-
portional to

(41) E ' ' R(S1, * * *, k)w(XijXi)p(xi)p(xi),
Si xi xi'

the first sum being over all sequences (&1, * *, 3k), and the sums over xi, xi being
taken over all values such that bix, + (1 -b)xt = yi, the fact that this is a
conditional sum being denoted by a dash. If we sum (41) over all possible sets
(yi, * Yk), wve get
(42) W = E E W(xi1xj)p(xi)p(x),

Xi Xi'
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the summation over the xi and x' being now unrestricted. This is the mean
fitness of the parent population.
Denote the frequency of the gamete (yr, * *, Yk) entering into the formation

of the next generation by p'(yi, * , yk). We now have

(43) p'(YI, Yk,im) = TV-' E'E R(6, * * , 8k)w(xijx`)p(xi)p(x4).
a; xi xi

These are the fundamental equations of evolutionary theory assuming random
mating and fitnesses independent of gene frequencies.
Two extreme cases are of particular interest. First, we may suppose that the

loci are so closely linked that no recombination at all is possible. We then have
R(O, - * *, 0) = R(1, * * *, 1) = 1/2, and all the other values of R are zero.
Equality (43) becomes

(44) p'(yi, * , yi.) = W-1 E w(xijyi)p(xi)p(yi) = 2 p(y)W-1' ap(Wy-
These equations are now the same as those considered in section 4, as is otherwise
obvious from the fact that we may consider the population to be equivalent to
one in which fitness is determined by a single locus at which there are 2k alleles.
Thus, in this case, the population moves to the unique state at which fitness is
maximized, if the stability conditions referred to before are satisfied.
The other extreme case is that of independent assortment. Here we put

R(%1,* * , Sk) = 2-k, so that

(45) p'(yi,l , Yk) = 2 W E w(xi|x)p(x )p(xt),

where the sum _* is taken over all sets (xi), (x,) such that (yi) is obtained by a
specified sequence of choices of the pairs xi and xi'. The theory of these equations
is much less simple than that of (44).

7. Selection dependent on two loci

In an attempt to understand these equations better, we now confine ourselves
to the case where selection is dependent on only two loci. Furthermore, since the
above used notation is clumsy for only two loci, we change the notation to agree
with that of a previous paper (Moran [16]) and which is similar to that used by
other writers (for example, Bodmer and Parsons [5]).
We suppose there are two loci at which the possible alleles are A and a, B and

b, respectively. The possible genotypes of the zygotes can then be arranged in
the array

AABB AaBB aaBB

(46) AABb AaBb aaBb

AAbb Aabb aablb
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whose corresponding fitnesses we now denote by

UWii W12 W'13

(47) W21 UV22 U'23

U'31 ?'32 U'33-

Let c1, C2, C3, C4 be the relative frequencies of the gametes AB, aB, Ab, ab enterinlg
into the formation of the first (parental) generation. Then the frequencies of the
above zygotes in this generation will be given by the array

2 2c2lF 2C1c2 C2

(48) 2clc3 2clc4 + 2c2c3 2c2c4
2 2

and the mean fitness W of this generation will be obtained by multiplyinlg each
of these frequencies by the corresponding w,j and summing. Notice that AaBb
is ascribed the same fitness whether it is a "coupling" zygote (AB/ab), or a
"repulsion" zygote (Ab/aB). When this is not true, the theory is less simple
(Parsons [19]).

Let R be the probability of an odd number of crossovers between the two loci.
Then 0 < R < 1, and for the most part, we can also assume R < 1/2. Enumerat-
ing the terms of the sums in (43) we easily find the following equations for the
frequencies (cl, c2, c3, c4) in the next generation:

(49) c1W = w11d + UW12C1C2 + u'21C1c3 + '22C1C4 + Rw22(c2c3 - c1C4)

= cl a + Rw22(c2c3 -C1C4)
2 0c1 2

(30) C2'IT = W12C1C2 + W13 + W22C2C3 + W23C2C4- RW22(c2c3 - C1C4)

= 2 C2 - Rw22(c2c3 - C1C4);

(51) C3'W = W21CIC3 + W22C2 31c3 + U'32C3C4 -RRu'22(c2c3 - C1C4)

=2 C3 d - RW22(c2c3 -C1C4)

(52) C4W = W22CiC4 + W23C2C4 + W32C3C4 + 'W33C4 + RU'22(C2c3 - C1C4)

= 2C4 + Rw22(c2c3 -C1C4)-
Tlhe quantities c1, C2, C3, C4 enter into these equations in a symmetrical manner.

Notice that this symmetry is not described by the full permutation group on four
symbols but by a permutation groui) of ord(er S.

In these equationis it is conveniienit to rememl)el thlat 11' is a (lla(1i-atic form
in the four variables (Cl, C2, C3, C4) with matrix



UNSOIVED PROBLEMS IN EVOLUTIONARY TIHEORY 471

'It 11 It'12 Ul121 W'22

(53) 7012 u 3 71'22 71'23

U'21 '1122 'U'31 '1W32

W22 W23 ?i'32 ?'33.

Equations (49)-(52) were derived by Lewontin and Kojima [11] (see also
Kimura [8]).

If R > 0, the maximization of W subject to E ci = 1 does not give equations
equivalent to those obtained for internal stationary points by putting cl = ci in
(49)-(52). In fact, to maximize W with E ci = 1 is equivalent to maximizing
_W/( C)2 for unrestricted nonnegative ci, and then rescaling the ci if necessary.

This leads to the equations

(54) a,W = 2111, i = l, * * * 4a9ci
for an internal point. If R > 0, these equations are not consistent with (49)-(52)
unless c2c3 = clc4, which is not in general true. Thus the stationary points of the
system defined by (49)-(52) are not found by maximizing TV, and it can be shown
(Moran [16]) that W can decrease from one generation to the next even when
each is produced by random mating.

Lewontin and Kojima call (c2c3 - c1c4) the "coefficient of linkage disequi-
librium," but this is misleading since it implies that the fact c2c3 /- clc4 is de-
pendent on the existence of linkage betweeni the loci (namely, R - 1/2). This
is not true, and c2c3 - clc4 might be better called a "coefficient of epistatic
disequilibrium."
Wright thought that evolutionary change could be described by saying that

populations tend to move so as to maximize TV, and his argument can be sum-
marized as follows. Using nonoverlappinig generations and the above model it is
clear that the population at each generation satisfies the Hardy-Weinberg law
for each locus separately; that is, the frequencies of the homozygotes are the
squares of the corresponding gene frequencies. Consider what happens at the
first locus and write p for the frequency of A and q = 1 - p for the frequency
of a (thus p = C1 + C3, q = C2 + C4). Then the gene frequency p' in the next
generation will be given by (10) where

(55) IV = Wlp2 + 2u72pq + uw3q2,
and

U('l=
C

+ ,tC2 + 2w21C1c3 + w31c2}

(56) = (c1 + C3) (C2 + C4) { 12CIC2 + W22(C1C4 + C2C3) + ?V32C3C4},

'3 = (C2+ C4) 2 {WI13C2 + 2u'23C2C4 + W33C4}.
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In carrying out the differentiation in (10), the wi have to be kept fixed. Wright
thus concluded that for stationarity we must have

(57) dW 0dp
-:

and this is true in the above sense when the wi are kept fixed. Since W is not a
function of the gene frequencies alone, this does not imply that the internal
stationary states of the population correspond to stationary values of W. In
fact, Wright assumed that W could be written in the form
(58) WV = Wllp2P2 + 2W12pqP2 + w1'3q2p2

+ u'21p2PQ + 4w22pqPQ + 2w23q2PQ
+ W31p2Q2 + 2w32pqQ2 + Uw33q2Q2

where P = 1 - Q is the frequency of B; that is, P = cl + C2. This is clearly not
correct. Plotting (58) as a function of p and P we obtain an "adaptive topog-
raphy," but from what has been said above, this throws no light on the behavior
of the population.

Using this incorrect theory, I attempted (Moran [15]) to discuss the prob-
lem of determining how many different isolated stationary internal points
such a population could have, and how many of these could be stable for small
perturbations. The condition that the points be isolated is necessary as it is
trivial to show that stationary points can fill up a whole interval. The problem
is then that of finding the stationary points of (58), and the answer is that there
can be at most five such points, and at most three local maxima, both bounds
being attainable.

This theory is incorrect, and the number of possible stationary and stable
points of the system (49)-(52) is an open question. However, it is possible that
five and three are the correct bounds, and this is suggested by the following
argument.

In the single locus problem considered in sections 3 and 4, the position and
stability of the unique internal stationary point was unaltered when the wi
underwent the transformation Wi -* Xwi + y, where X > 0, A > - X min wi. On
the other hand, for the system (49)-(52) the stationary solutions are, in general,
only invariant for transformations of the form wij -* Xw, X > 0. However, con-
sider the effect of a transformation of the type wij - 1 + X(wjj - 1). If X -* 0,
the new w,j tend to unity. It can then be easily shown that c2c3 - C1C4 -+ 0, and
the stationary points tend in the limit to the stationary points of the function
defined by (58). This suggests that for wij near unity the number of possible
stationary points remains the same, and hence, this holds true generally. How-
ever, this has not been proved.
From equations (49)-(52) we can easily derive, as in section 5, a set of four

differential equations to describe the evolution of the population in a continuous
time model. However, these are incorrect for the same reasons as those considered
in section 5, and a full description of such a population requires the frequencies
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of each of the zygotes. There are nine of these, adding to unity, and their values
do not, in general, remain equal to the values c2, 2clc2, * given in section 7. The
differential equations derived directly from (49)-(52) may, however, be regarded
as a useful approximation when the wij are nearly equal.

Since the maximization of W does not provide a method for determining the
stationary points, we may ask if there is any other function whose extreme value
would serve. Relatively trivial examples are easy to construct, for example, by
summing the squares of the differences of the right-hand sides of (49)-(52) from
the values Wci, (i = 1, - - *, 4). This is not a quadratic form in the ci, and it seems
probable that there is no such quadratic form whose extreme or stationary values
correspond to stationary states of the population. Furthermore, if a suitable
function could be found, it would be desirable that it should be nondecreasing
from generation to generation. One might hope in this way to construct a theory
of the equations of evolutionary change analogous to the general theories of
dynamics.

I have not succeeded in constructing such a function directly from equations
(49)-(52). Professor S. Karlin has, however, shown that if we assume that
iteration of these recurrence relations always results in the state of the system
converging to a set of points S, then there exists a continuous function of the ci
which is nondecreasing. I am indebted to him for the following proof.

Let x be a vector in a bounded space with a distance function p(x, 1/), and let
x' = Tx be a transformation which has the property that the nth iterate, T
converges to a subset S; that is, p(TnX, S) -- 0. Then there exists a continuous
function, u(x), such that u(Tx) _ u(x) for all x. To prove this, define a continu-
ous function

5uj(a) > 0, if p(x, S) > j-',

uj()() = 0, if p(x, S) j-,
and then define

(60) u(X) = E 2-i 1 + uuj(TnX)}.
j=l t n=0 )

The inner sum is really finite since TnX - S, and the outer sum is convergent.
It is then obvious that u(Tx) _ u(x).

This result assumes that we know that the iterates converge to the set S. This
seems highly probable in the genetic case but is not known for certainty. What
is needed is to construct a function like u(s) directly from the wij and ci and use
this to deduce the asymptotic behavior of Tnx.

8. The stability of equilibria and the effects of mutation

Suppose that the ci are the values of a stationary internal point so that
0 < ci < 1. Then equations (49)-(52) must hold with cf replaced by ci. As in
Moran [16] (see also Kimura [8]), we investigate the effect of a small pertur-
bation around this point by replacing the ci with ci + Si, where the bi are small.
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In the next generation we will get values cl which we put equal to ci + Si', where
the bt are also small. Then expanding the recurrence relation around the point
(C1, C2, C3, C4) and taking the linear terms only, we get
(61) a=auj
where (aij) is a matrix such that

(62)~r d~{ W 1 dOW . D W)(62) aii = W-1 12wd+ I
Ci d02 + Rw22k(i) d - Cid

and if i $ j,
I d92W aD d1V](63) aij = W- 1 ci d, + RU22ki) dc- dc}

where k(i) = + 1 if i = 1, 4, and where k(i) =-1 if i = 2, 3, and D is defined
as C2C3 - C1C4.

It is easy to verify that E, a,j = 0, and therefore E, ' = 0, as we expect.
The matrix, therefore, has one root equal to zero, and the state will be stable if
the other three roots are less than unity in modulus.

Since in general there are neighboring points to a stationary point (ce) at
which W is both greater and less than its value at (ci), we might expect that the
effect of mutation, which will shift the stationary point somewhat, could either
increase or decrease the fitness. Consider the effect of such mutation at a stable
point.

Suppose that A mutates to a at a rate a, per locus per generation, and a to
A, B to b, b to B similarly at rates a2, 01, and 02, respectively. If the (ci) are the
initial frequencies of the gametes, their frequencies after mutation will be

(64) cl + El = (1 - a,)(1 - 01)cl + a2(1 - 01)C2 + (1 - al)2C3 + a22C4,
(65) C2 + E2 = a(l - #3)cl + (1 - a2)(1 - 1)C2 + a102C3 + (1 - a2)2C4,
(66) C3 + E3 = (1 - ai)Oici + a201C2 + (1 - al)(1- 2)C3 + a2(1 -2)C4

(67) C4 + E4 = al3lCl + (1 - a2)c2 + ai(1- 12)C3 + (1 - a2)(1 -2)C4

The ai and 1,i being very small, we may neglect terms of higher order thani the
first and replace the above equations by

(68) E, = - (a, + Oi)ci + a2C2 + 32c3
(69) E2 = aic - (a2 + 01)C2 + f2C44

(70) E3 = 31c1 - (a, + 32)c3 + a2C4

(71) E4 = 01C2 + a1C3 - (a2 + 02)C4.
To find the new stationary position we use (49)-(52) with cl, -* , c4' replaced

by cl, * * *, C4 on the left-hand sides, and cl, -* *, C4 on the right-hand sides re-
placed by c1 + el, * * *, C4 + E4, and then solve for the ci. The new values of the
ci will differ from the previous stationary values by quantities 77, fl2, 773, 774, say,
and the effect on the fitness is to add to it an amount
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(72) E d TV
where the derivatives are taken at the previous stationary stable poinit.
The -ji will in general be of the same order as the mutation rates, and if IV is

not at a stationary point, the effect on W will be of the same order as these
mutation rates. This is in sharp contrast to the situation for a single locus where
the effect of mutation is of the second order in the mutation rates if the original
stationary point was internal, and of the first order onily when the original
position was at the boundaries. Furthermore, it is now no longer obvious that
the effect of mutation is to decrease the fitness, for TV is not in general a maximum
value. If the transformationi (64)-(67) were a perfectly general one, it seems that
the ci could be displaced in any direction (consistent with E ci = 1), and W
could therefore be decreased or increased. We would then have the intriguing
conclusion that the mean fitness of a population could be increased by mutation.
However, the transformation (64)-(67) is not a general one, since it depends on
only four constants instead of twelve (twelve because E ei must equal zero).
Thus it may be true that this special type of perturbation can only result in a
decrease in T, but this has not been proved.

9. What is epistasis?

Epistasis may be said to occur in the joint effect of two loci if the effect of
varying the genotype at one locus depends on the genotype at the other. This is
an ambiguous definition, particularly when the effect concerned is the fitness of
the joint genotype. Thus suppose first that wij can be written as ui + vj, where
us, (i = 1, 2, 3) depends on the state at the first locus and vj on the state at the
second. The effects of the two loci may then be described as "additive," and if
this conditioni does not occur, we could say that there is epistasis between the
two loci.

Alternatively, we might define the absence of epistasis by puttinig wij = uiv
where ui and vj are defined in a similar way. We shall call this the "multipli-
cative" case. Since "fitness" is defined to be proportional to the expected number
of gametes that a newly formed zygote of the specified type will contribute to
the next generation, it appears at first sight that the behavior of the gene fre-
quenicies at the two loci in the multiplicative case should be independent of each
other so that epistasis is best defined as the absence of the conditioll wij = uivi.

T'his is not correct, as we shall now see in inivestigating some of the consie-
quences of assuming that in (49)-(52) the uij are one of these two forms.
We suppose u1 < U2 > u3, vl < v2 > V3, and consider separately the two cases

wij = Ui + vj ("additive"), and utij = uivj ("multiplicative"). Write

(73) P = 1-Q = U2 -U3
2Ue2- Ul - 73

(74)
= 1- =

V2 - V3
l 2V-Vl V
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Then the set of values
(75) (cl = Pp, C2 = Pq, C3 = Qp, C4 = Qq)
is a solution of (49)-(52) for both the additive and multiplicative case. This is an
internal point and for it c2c3 - clc4 = 0, so that the value of R is not relevant.
In the additive case, equations (49)-(52) can be written as follows:

(76) c'W = Cl1 1cl + u1c2 + u2c3 + u2c4} + ci{vIc1 + v2c2 + v1c3 + v2c4}
+ R(u2 + V2)(C2C3-CC4)

(77) C2' = C2 {u1C1 + u1C2 + U2C3 + U2C4} + C2 {V2C1 + V3C2 + V2C3 + V3C4}
- R(u2 + V2)(c2c3-CC4),

(78) C3l'V = C3{U2C1 + U2C2 + U3C3 + U3C4} + C3{v1c1 + V2C2 + V1C3 + V2C4}

- R(u2 + V2)(C2C3 -CC4)
(79) C4W = C4 {u2C + U2C2 + U3C3 + U3C4} + C3 {v2C1 + V3C2 + V2C3 + V3C4}

+ R(u2 + V2)(C2C3-CC4),
where

(80) WV = ull(Cl + C2)2 + 2U2(c1 + C2)(C3 + C4) + U3(C3 + C4)2
+ V1(C1 + C3)2 + 2v2(c, + C3)(C2 + C4) + V4(C2 + C4)2.

From this we see that the equations for a stationary point with R = 0 involve
only the marginal sums C1 + C2, C3 + C4, C1 + C3, C2 + C4, that is, the gene fre-
quencies. It follows therefore that for R = 0, (cl = Pp + x, C2 = Pq - x, C3 =
Qp- x, C4 = Qq + x) is also a solution for any value of x that makes all the ci
nonnegative. Thus none of these stationary states can be strictly stable.

Notice further that all these points are maxima of W as given by (80), although
they are not strict local maxima. For R = 0, W is nondecreasing from one
generation to the next as follows from the case of one locus with four alleles.

If R > 0, we can prove that there is only one internal point which is stationary,
and this must be given by (75). To do this, put Ct = ci in (76)-(79) and divide
by c1, C2, C3, C4, respectively, since these are nonzero. Subtracting (77) and (78)
from the sum of (76) and (79), we get

(81) R(U2 + V2)(C2C3 - c1C4)(cI1 + C21 + C31 + C41) = 0,
from which it follows that C2C3 = C1C4. If the latter is true, we can put cl = xy,
C2 = x(1 - Y), C3 = (1- X)Y, C4 = (1- x)(1 - y), and the only values of x and
y satisfying-(76)-(79) will be found to be x = P, y = p.

It is not known whether this solution is globally stable, namely that all internal
points correspond to populations which converge to (75), although local stability
could be investigated by using the criterion of section 8. It might seem that a
proof of stability would be easily carried out along the lines of the single locus
case, but this is not true. It is in general not true that the expression (c2C3- C1C4)
decreases in absoluite value from generation to generation, nor that the gene
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fre(quencies cl + c2, cl + c3 converge monotonically to their final values. These
surprising facts can be illustrated by simple numerical examples.
The multiplicative ease is even less simple. Equations (49)-(52) now become

the following:
(82) cIW = Cl{ClUlvl + C2U1V2 + C3U2V1 + C4U2V2} + Ru2v2(c2c3 -CC4),
(83) C2'W = C2{C1U1V2 + C2U1v3 + C3U2V2 + C4U2V3} - Ru12v2(c2c3- CIC4),
(84) C3W = C3{lcu2vl + C2U2V2 + C3U3V1 + C3U3V2} - Ru2v2(c2c3 -CC4)

(85) c4'1V = C4{Clu2V2 + C2U2V3 + C3U3V2 + c3u3v3} + Ru2v2(c2c3 - C1C4).
The set of values (75) is again a solution of these equations but may or may

not be stable. We may investigate some of the possible forms of behavior by
considering the simple symmetric scheme of fitnesses given by

1 2 1

(86) 2 a 2

1 2 1

where a > 0. Lewontin and Koj ima [11] and Parsons [20] have also studied
special cases like this. The case a = 3 is "additive" and a = 4 is "multiplicative."
Equations (49)-(52) then become

(87) Wc1T = c'l + 2clc2 + 2c1c3 + ac1c4 + Ra(c2c3 -CC4),
(88) Wc' = 2c1c2 + c2 + ac2c3 + 2c2c4 - Ra(c2c3 -ClC4),
(89) Wc3 = 2c1C3 + aC2C3 + c3 + 2c3c4 - Ra(c2c3 -CC4),
(90) Wc4 = ac1c4 + 2c2c4 + 2c3c4 + C4 + Ra(c2c3 - clc4).

Suppose that we start from an initial state in which cl = C4, C2 = c3. Then
in the next generation c1 = c4, c2 = c3 by symmetry, and furthermore,
Ci + C2 = C1 + C3 = cl + C2 = cl + C3 = 1/2. Simplifying the equations we find
c-l = F(c, - c2) where

(91) 1 + a- 2Ra

Suppose first that R = 0. If a = 3, F = 1 and ci = ci. This is the neutral equi-
librium case already considered above since if a = 3, the fitnesses are additive.
If a > 3, F > 1 and c1 = c4 converges to 1/2, and C2 = c3 to zero. If a < 3,
then F < 1 and all ci converge to 1/4. Thus, if a < 3 the state ci = 1/4 is proba-
bly globally stable (we have not actually proved this as we have only conlsidered
the situation where c1 = c4, C2 = c3), while if a > 3, the state ci = 1/4 is certainly
unstable.
Now suppose R > 0. If a < 3, we again get F < 1, and the state ci = 1/4 is

probably globally stable. If a > 3, the value of F depends on a, and F < 1 or
> 1 according to whether 2Ra is greater or less than 8(a - 3)cIc2. Near the poinit
ci = 1/4, clc2 is nearly 1/16 and thus, if 2Ra > 1/2(a - 3), c1- C2 will tend to
zero (in particular, this is true for R = 1/2), and the point ci = 1/4 is probably
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locally stable (this could be investigated using the criterioni of section 8). Oii the
other hand, if 2Ra < 1/2(a - 3) (for instance, for a = 4, R < 1/16), cl-C2
will increase until C1C2 = R{4(a - 3)}'-. Beyond this point cl-c2 will decrease.
This is therefore a stationary point and probably also a locally stable point. As
an example, consider the fitnesses (86) with a = 4, R = 3/64. Then (ci) =
(3/8, 1/8, 1/8, 3/8) and ci = (1/8, 3/8, 3/8, 1/8) are stationary points. Thus
for sufficiently tight linkage, the point ci = 1/4 is certainly unstable. For a = 4
and R = 1/2 there is no point for which C1C2 = Ra{4(a - 3)}1-l since
2Ra > 1/2(a - 3) and clc2 necessarily not greater than 1/16 if cl =C4, C2 = C3.
This suggests that for R = 1/2 the point ci = 1/4 is locally stable (as could be
investigated) and even globally stable.
The above results suggest that for R = 1/2 the internal point (75) is stable,

and even globally stable, in both the additive and multiplicative cases, but as
stated above the ci do not in the additive case always converge monotonically
to their final values as they do for a single locus. In this case the expression
C2C3 - C1C4 can also increase from an initial value of zero.

It is also curious to note that in the multiplicative case it is possible for
C2C3 - C1C4 to increase in absolute value, but if it is initially zero, it remains zero.
This can be shown by an interesting identity pointed out to me by Professor
K. Mahler. Multiplying the equations (82)-(85) together in pairs and subtract-
ing, we get

(92) (C2C3-C3 C )W2 = (C2C3 - cIC4)(Q-Ru2V21IV),
where

(93) Q = Ulu2(VIC1 + V2c2)(V2cl + V3C2) + U2U3(VIC3 + V2C4)(V2C3 + V3c4)
+ (U1u3 + U2)V1V2C1C3 + (ulu3 + u2)V2V3C2C4

+ (UlU3V1v3 + tt2v) (C1c4 + C2C3).

It is easy to verify from this that it is possible to have P. - Ru2v2W > W2,
so that JcEc6 - cc41 > jc2c3 - clc41. On the other hand, if c2c3 - cAc4 = 0, then
c2c3 -C1C4 = 0.

10. Final remarks

It will be seen that much remains to be done in this subj ect. We need to
understand much better the general theory of section 6 and the algebraic struc-
ture which lies behind it. The behavior of the relatively simple case of two loci
each with two alleles also needs a great deal more study.

Applications of these equations to particular problems have been made. Thus,
Kimura [8] has studied a system in which selection leads to closer linkage
between two loci, and Ewens (personal communication) has used (49)-(52) to
study the evolution of dominance.

Applications to human disease are, perhaps, even more interesting. Incom-
patibility between blood groups can cause the death of a foetus, and furthermore,
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there is now evidence that a considerable proportion of fertilized eggs never result
in a pregnancy, and that quite large selective differences in this respect exist.
There is even evidence that existence of an ABO incompatibility can inhibit the
effects of an Rh incompatibility. This type of phenomenon may well lead to an
explanation of some of the puzzling features of the genetics of schizophrenia
(Moran [17]). This is a mental disease of young adults for which there is now
substantial evidence of a genetic bases, although its exact mode of inheritance
is not known. The overt expression of the disease has undoubtedly a negative
selective effect, but the underlying genetic polymorphism must be very stable
since the frequency of the disease does not vary greatly between different
countries (although there are large variations between different social classes).
Calculations based on simple models suggest that if the polymorphism is main-
tained by selective advantages in heterozygotes, these will have to be at least of
the order of 5%, and more probably 10%. The puzzle is to understand how so
large a selective advantage can come about. If, however, the presence of a factor
for schizophrenia can inhibit one of the incompatibilities, such as those for blood
groups, which result in such a large loss of fertilized eggs, the polymorphism
would be explained.

It will then be necessary to study the stability of systems like (49)-(52) with
more than two alleles at each locus. However, further complications are likely
to arise in this and similar problems of human genetics, for the definition of the
fitnesses w,j conceals strongly simplifying assumptions; it is probable that it will
be necessary to define "fitness" as a function of both parental genotypes in a
mating. This leads to a much more complicated theory.

Problems of a different kind arise when we attempt to fit a model of the type
described by (49)-(52) to observed data. If we can observe in a large population
the relative numbers of reproductive adults of the nine genotypes AABB, - - ,

aabb, we obtain eight independent quantities. Supposing the polymorphism to be
stationary, we have eleven quantities to estimate: the eight independent ratios
of the wij, and three independent quantities out of c1, C2, C3, C4. These eleven
quantities are all identifiable because the assumption of stationarity used in their
estimation implies three independent relations between them (that is, three of
the equations (49)-(52)). We could then go further and test the resulting system
for stability by the criterion of section 8, but the effect of sampling variations on
this is not known.

I am indebted to Professors S. Karlin and K. Mahler, and Drs. H. Canii,
A. W. Edwards, and W. J. Ewens for some helpful criticisms and suggestions.
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